\(\int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\) [625]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 607 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=-\frac {2 \left (8 a^4 A b-28 a^2 A b^3+16 A b^5-3 a^5 B+15 a^3 b^2 B-8 a b^4 B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^5 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}-\frac {2 \left (16 A b^4-a^4 (A-3 B)+4 a b^3 (3 A-2 B)-9 a^3 b (A-B)-2 a^2 b^2 (8 A+3 B)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^4 \sqrt {a+b} \left (a^2-b^2\right ) d \sqrt {\sec (c+d x)}}+\frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 b \left (10 a^2 A b-6 A b^3-7 a^3 B+3 a b^2 B\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^4 A-13 a^2 A b^2+8 A b^4+8 a^3 b B-4 a b^3 B\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d} \]

[Out]

2/3*b*(A*b-B*a)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))^(3/2)+2/3*b*(10*A*a^2*b-6*A*b^3-7*B
*a^3+3*B*a*b^2)*sec(d*x+c)^(3/2)*sin(d*x+c)/a^2/(a^2-b^2)^2/d/(a+b*cos(d*x+c))^(1/2)+2/3*(A*a^4-13*A*a^2*b^2+8
*A*b^4+8*B*a^3*b-4*B*a*b^3)*sec(d*x+c)^(3/2)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a^3/(a^2-b^2)^2/d-2/3*(8*A*a^4*
b-28*A*a^2*b^3+16*A*b^5-3*B*a^5+15*B*a^3*b^2-8*B*a*b^4)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2
)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-
b))^(1/2)/a^5/(a-b)/(a+b)^(3/2)/d/sec(d*x+c)^(1/2)-2/3*(16*A*b^4-a^4*(A-3*B)+4*a*b^3*(3*A-2*B)-9*a^3*b*(A-B)-2
*a^2*b^2*(8*A+3*B))*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1
/2))*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^4/(a^2-b^2)/d/(a+b)^(1/2
)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 2.70 (sec) , antiderivative size = 607, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3040, 3079, 3134, 3077, 2895, 3073} \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 b (A b-a B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}+\frac {2 b \left (-7 a^3 B+10 a^2 A b+3 a b^2 B-6 A b^3\right ) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (-\left (a^4 (A-3 B)\right )-9 a^3 b (A-B)-2 a^2 b^2 (8 A+3 B)+4 a b^3 (3 A-2 B)+16 A b^4\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{3 a^4 d \sqrt {a+b} \left (a^2-b^2\right ) \sqrt {\sec (c+d x)}}+\frac {2 \left (a^4 A+8 a^3 b B-13 a^2 A b^2-4 a b^3 B+8 A b^4\right ) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}{3 a^3 d \left (a^2-b^2\right )^2}-\frac {2 \left (-3 a^5 B+8 a^4 A b+15 a^3 b^2 B-28 a^2 A b^3-8 a b^4 B+16 A b^5\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{3 a^5 d (a-b) (a+b)^{3/2} \sqrt {\sec (c+d x)}} \]

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2))/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(-2*(8*a^4*A*b - 28*a^2*A*b^3 + 16*A*b^5 - 3*a^5*B + 15*a^3*b^2*B - 8*a*b^4*B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]
*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 -
 Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^5*(a - b)*(a + b)^(3/2)*d*Sqrt[Sec[c + d*x
]]) - (2*(16*A*b^4 - a^4*(A - 3*B) + 4*a*b^3*(3*A - 2*B) - 9*a^3*b*(A - B) - 2*a^2*b^2*(8*A + 3*B))*Sqrt[Cos[c
 + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(
a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^4*Sqrt[a + b]*(a^2 -
b^2)*d*Sqrt[Sec[c + d*x]]) + (2*b*(A*b - a*B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*(a + b*Cos[c
 + d*x])^(3/2)) + (2*b*(10*a^2*A*b - 6*A*b^3 - 7*a^3*B + 3*a*b^2*B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*a^2*(a
^2 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]]) + (2*(a^4*A - 13*a^2*A*b^2 + 8*A*b^4 + 8*a^3*b*B - 4*a*b^3*B)*Sqrt[a +
 b*Cos[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*a^3*(a^2 - b^2)^2*d)

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3040

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Sin[e + f*x])^m*((
c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3079

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c +
d*Sin[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*
(m + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n
, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx \\ & = \frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3}{2} \left (a^2 A-2 A b^2+a b B\right )-\frac {3}{2} a (A b-a B) \cos (c+d x)+2 b (A b-a B) \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx}{3 a \left (a^2-b^2\right )} \\ & = \frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 b \left (10 a^2 A b-6 A b^3-7 a^3 B+3 a b^2 B\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3}{4} \left (a^4 A-13 a^2 A b^2+8 A b^4+8 a^3 b B-4 a b^3 B\right )-\frac {1}{4} a \left (6 a^2 A b-2 A b^3-3 a^3 B-a b^2 B\right ) \cos (c+d x)+\frac {1}{2} b \left (10 a^2 A b-6 A b^3-7 a^3 B+3 a b^2 B\right ) \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2} \\ & = \frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 b \left (10 a^2 A b-6 A b^3-7 a^3 B+3 a b^2 B\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^4 A-13 a^2 A b^2+8 A b^4+8 a^3 b B-4 a b^3 B\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d}+\frac {\left (8 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {3}{8} \left (8 a^4 A b-28 a^2 A b^3+16 A b^5-3 a^5 B+15 a^3 b^2 B-8 a b^4 B\right )+\frac {3}{8} a \left (a^4 A+7 a^2 A b^2-4 A b^4-6 a^3 b B+2 a b^3 B\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{9 a^3 \left (a^2-b^2\right )^2} \\ & = \frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 b \left (10 a^2 A b-6 A b^3-7 a^3 B+3 a b^2 B\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^4 A-13 a^2 A b^2+8 A b^4+8 a^3 b B-4 a b^3 B\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d}-\frac {\left (\left (8 a^4 A b-28 a^2 A b^3+16 A b^5-3 a^5 B+15 a^3 b^2 B-8 a b^4 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )^2}-\frac {\left ((a-b) \left (16 A b^4-a^4 (A-3 B)+4 a b^3 (3 A-2 B)-9 a^3 b (A-B)-2 a^2 b^2 (8 A+3 B)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )^2} \\ & = -\frac {2 \left (8 a^4 A b-28 a^2 A b^3+16 A b^5-3 a^5 B+15 a^3 b^2 B-8 a b^4 B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^5 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}-\frac {2 \left (16 A b^4-a^4 (A-3 B)+4 a b^3 (3 A-2 B)-9 a^3 b (A-B)-2 a^2 b^2 (8 A+3 B)\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^4 (a-b) (a+b)^{3/2} d \sqrt {\sec (c+d x)}}+\frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}+\frac {2 b \left (10 a^2 A b-6 A b^3-7 a^3 B+3 a b^2 B\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^4 A-13 a^2 A b^2+8 A b^4+8 a^3 b B-4 a b^3 B\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )^2 d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(4316\) vs. \(2(607)=1214\).

Time = 24.30 (sec) , antiderivative size = 4316, normalized size of antiderivative = 7.11 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Result too large to show} \]

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2))/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*(-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^2*
B + 8*a*b^4*B)*Sin[c + d*x])/(3*a^4*(a^2 - b^2)^2) + (2*(-(A*b^3*Sin[c + d*x]) + a*b^2*B*Sin[c + d*x]))/(3*a^2
*(a^2 - b^2)*(a + b*Cos[c + d*x])^2) + (2*(-11*a^2*A*b^3*Sin[c + d*x] + 7*A*b^5*Sin[c + d*x] + 8*a^3*b^2*B*Sin
[c + d*x] - 4*a*b^4*B*Sin[c + d*x]))/(3*a^3*(a^2 - b^2)^2*(a + b*Cos[c + d*x])) + (2*A*Tan[c + d*x])/(3*a^3)))
/d + (2*((8*a*A*b)/(3*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (28*A*b^3)/(3*a*(a^2 - b^2)
^2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (16*A*b^5)/(3*a^3*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]*Sqr
t[Sec[c + d*x]]) - (a^2*B)/((a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (5*b^2*B)/((a^2 - b^2
)^2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (8*b^4*B)/(3*a^2*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]*Sqr
t[Sec[c + d*x]]) + (a^2*A*Sqrt[Sec[c + d*x]])/(3*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]) + (5*A*b^2*Sqrt[Sec[c
 + d*x]])/((a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]) - (32*A*b^4*Sqrt[Sec[c + d*x]])/(3*a^2*(a^2 - b^2)^2*Sqrt[a
 + b*Cos[c + d*x]]) + (16*A*b^6*Sqrt[Sec[c + d*x]])/(3*a^4*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]) - (3*a*b*B*
Sqrt[Sec[c + d*x]])/((a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]) + (17*b^3*B*Sqrt[Sec[c + d*x]])/(3*a*(a^2 - b^2)^
2*Sqrt[a + b*Cos[c + d*x]]) - (8*b^5*B*Sqrt[Sec[c + d*x]])/(3*a^3*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]) + (8
*A*b^2*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]) - (28*A*b^4*Cos[2*(c +
d*x)]*Sqrt[Sec[c + d*x]])/(3*a^2*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]) + (16*A*b^6*Cos[2*(c + d*x)]*Sqrt[Sec
[c + d*x]])/(3*a^4*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]) - (a*b*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/((a^2
 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]) + (5*b^3*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(a*(a^2 - b^2)^2*Sqrt[a +
b*Cos[c + d*x]]) - (8*b^5*B*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*a^3*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]
))*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-2*(a + b)*(-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*
b^2*B + 8*a*b^4*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x])
)]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(-16*A*b^4 + 2*a^2*b^2*(8*A - 3*B) - 9*
a^3*b*(A + B) + 4*a*b^3*(3*A + 2*B) + a^4*(A + 3*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c +
 d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (-8*a^4*A*b + 28*
a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^2*B + 8*a*b^4*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^
2*Tan[(c + d*x)/2]))/(3*a^4*(a^2 - b^2)^2*d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*((b*Sqrt[Cos[(c
+ d*x)/2]^2*Sec[c + d*x]]*Sin[c + d*x]*(-2*(a + b)*(-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^
2*B + 8*a*b^4*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]
*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(-16*A*b^4 + 2*a^2*b^2*(8*A - 3*B) - 9*a^
3*b*(A + B) + 4*a*b^3*(3*A + 2*B) + a^4*(A + 3*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d
*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (-8*a^4*A*b + 28*a^
2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^2*B + 8*a*b^4*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*
Tan[(c + d*x)/2]))/(3*a^4*(a^2 - b^2)^2*(a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) - (Sqrt[Cos[(c +
d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(-2*(a + b)*(-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*
b^2*B + 8*a*b^4*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x])
)]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(a + b)*(-16*A*b^4 + 2*a^2*b^2*(8*A - 3*B) - 9*
a^3*b*(A + B) + 4*a*b^3*(3*A + 2*B) + a^4*(A + 3*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c +
 d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (-8*a^4*A*b + 28*
a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^2*B + 8*a*b^4*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^
2*Tan[(c + d*x)/2]))/(3*a^4*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + (2*Sqrt[Cos[(c
+ d*x)/2]^2*Sec[c + d*x]]*(-1/2*((-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^2*B + 8*a*b^4*B)*C
os[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^4) - ((a + b)*(-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*
B - 15*a^3*b^2*B + 8*a*b^4*B)*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c
+ d*x)/2]], (-a + b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*
x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + (a*(a + b)*(-16*A*b^4 + 2*a^2*b^2*(8*A - 3*B) - 9*a^3*b*(A + B)
+ 4*a*b^3*(3*A + 2*B) + a^4*(A + 3*B))*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSi
n[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + C
os[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - ((a + b)*(-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*
B - 15*a^3*b^2*B + 8*a*b^4*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a +
b)/(a + b)]*(-((b*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((a + b*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(
1 + Cos[c + d*x])^2)))/Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + (a*(a + b)*(-16*A*b^4 + 2*a^2
*b^2*(8*A - 3*B) - 9*a^3*b*(A + B) + 4*a*b^3*(3*A + 2*B) + a^4*(A + 3*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])
]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*(-((b*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((
a + b*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos
[c + d*x]))] + b*(-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^2*B + 8*a*b^4*B)*Cos[c + d*x]*Sec[
(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^2*B
+ 8*a*b^4*B)*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (-8*a^4*A*b + 28*a^2*A*b^
3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^2*B + 8*a*b^4*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c
 + d*x)/2]^2 + (a*(a + b)*(-16*A*b^4 + 2*a^2*b^2*(8*A - 3*B) - 9*a^3*b*(A + B) + 4*a*b^3*(3*A + 2*B) + a^4*(A
+ 3*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c +
 d*x)/2]^2)/(Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((-a + b)*Tan[(c + d*x)/2]^2)/(a + b)]) - ((a + b)*(-8*a^4*
A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^2*B + 8*a*b^4*B)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt
[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sqrt[1 - ((-a + b)*Tan[(c + d*x)/2]^2)/
(a + b)])/Sqrt[1 - Tan[(c + d*x)/2]^2]))/(3*a^4*(a^2 - b^2)^2*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2
]) + ((-2*(a + b)*(-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15*a^3*b^2*B + 8*a*b^4*B)*Sqrt[Cos[c + d*x
]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2
]], (-a + b)/(a + b)] + 2*a*(a + b)*(-16*A*b^4 + 2*a^2*b^2*(8*A - 3*B) - 9*a^3*b*(A + B) + 4*a*b^3*(3*A + 2*B)
 + a^4*(A + 3*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))
]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - (-8*a^4*A*b + 28*a^2*A*b^3 - 16*A*b^5 + 3*a^5*B - 15
*a^3*b^2*B + 8*a*b^4*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*(-(Cos[(c + d*x
)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(3*a^4*(a^2 - b^2)^2*Sqrt
[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]])))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(9527\) vs. \(2(561)=1122\).

Time = 25.71 (sec) , antiderivative size = 9528, normalized size of antiderivative = 15.70

method result size
parts \(\text {Expression too large to display}\) \(9528\)
default \(\text {Expression too large to display}\) \(9947\)

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+cos(d*x+c)*b)^(5/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^(5/2)/(b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*
x + c)^2 + 3*a^2*b*cos(d*x + c) + a^3), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(5/2)/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^(5/2), x)

Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(5/2))/(a + b*cos(c + d*x))^(5/2),x)

[Out]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(5/2))/(a + b*cos(c + d*x))^(5/2), x)